University of Mumbai
 Examination 2020 under cluster 9 (FAMT)

Program: Electronics and Telecommunication Engineering
Curriculum Scheme: Revised 2019
Examination: First Year Semester I
Course Code: FEC105 and Course Name: Basic Electrical Engineering

Time: 1 hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Mesh is a closed loop
Option A:	that contains many loops
Option B:	that contains two loops
Option C:	that doesn't contain any other loop
Option D:	that is complex loop
Q2.	Kirchhoff's Voltage \& current laws are applied respectively in
Option A:	Only Mesh Analysis
Option B:	Only Nodal Analysis
Option C:	Mesh \& Nodal Analysis
Option D:	Nodal \& Mesh Analysis
Q3.	Voltage \& currents are always measure in
Option A:	Series \& parallel respectively
Option B:	Parallel \& Series respectively
Option C:	Only in parallel
Option D:	Only in series
Q4.	Internal resistance of an Ideal voltage source is
Option A:	Infinite
Option B:	negative
Option C:	Zero
Option D:	Non Zero
Q5.	Calculate Equivalent resistance for given network if all resistors having equal value of 10Ω (a)
Option A:	2.5Ω
Option B:	5Ω
Option C:	40Ω
Option D:	100Ω

University of Mumbai

Examination 2020 under cluster 9 (FAMT)

Q6.	For Given Figure $\mathrm{I} 1 \& \mathrm{I} 2$ values are

University of Mumbai

Examination 2020 under cluster 9 (FAMT)

Option C:	25V,60Hz
Option D:	$17.67 \mathrm{~V}, 60 \mathrm{~Hz}$
Q11.	For parallel circuit impedances $\mathrm{Z} 1=6+\mathrm{j} 8, \mathrm{Z2}=8-6 \mathrm{j}$ of individual branches What is equivalent Impedance
Option A:	5+2j
Option B:	1+2j
Option C:	7+1j
Option D:	7-1j
Q12.	Which Circuit never consumes the power
Option A:	Purely resistive
Option B:	Inductive or Series RL
Option C:	Purely Capacitive
Option D:	Capacitive or Series RC
Q13.	In Series Resonance the Impedance Z is
Option A:	R
Option B:	$\mathrm{R}+\mathrm{j} \mathrm{X}_{\mathrm{L}}$
Option C:	$\mathrm{R}-\mathrm{j} \mathrm{X}_{\mathrm{C}}$
Option D:	$\mathrm{R}+\mathrm{j}\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)$
Q14.	Parallel Resonance is
Option A:	Voltage Magnification Circuits
Option B:	Current Magnification Circuits
Option C:	Current Reduction Circuits
Option D:	Voltage Reduction Circuits
Q15.	Power factor in series Resonance is
Option A:	Zero
Option B:	one
Option C:	Less than one
Option D:	Greater than one
Q16.	What is Phase Sequence in 3Φ system
Option A:	RBY
Option B:	YBR
Option C:	BYR
Option D:	RYB
Q17.	In star connected 3Φ load Line Voltage VL is $=$
Option A:	$\sqrt{3} \mathrm{~V}_{\mathrm{Ph}}$
Option B:	V_{Ph}
Option C:	$\frac{1}{\sqrt{3} \mathrm{VPh}}$

University of Mumbai

Examination 2020 under cluster 9 (FAMT)

Option D:	$\sqrt{2}$ VPh
Q18.	In Delta connected load
Option A:	Line \& Phase Voltages are Equal
Option B:	Line \& Phase Currents are Equal
Option C:	Phase Voltage \& Phase Currents are Equal
Option D:	LineVoltage \& Line Currents are Equal
Q19.	Power in Star connected load is equal to
Option A:	Power in Delta connected load
Option B:	Three times the Power in Delta connected load
Option C:	One Third of Power in Delta connected load
Option D:	Two times the Power in Delta connected load
Q20.	Transformar converts input AC signal into
Option A:	DC signal
Option B:	AC signal with change in Voltage or Currents with Keeping constant Frequency.
Option C:	AC signal with change in Voltage or Currents with variable Frequency.
Option D:	Constant Signal
Q21.	For given Voltage Rating 440 V/230V What is type of Transformer
Option A:	Step down
Option B:	Step up
Option C:	isolated
Option D:	Auto
Q22.	A role of slip ring in a Ac generator
Option A:	Power transmission
Option B:	Allow electrical contact with brushes
Option C:	Not allow electrical contact with brushes
Option D:	For rotation of armature
Q23.	Open Circuit Test on Transformer is used to Calculate
Option A:	Copper Loss
Option B:	Iron Loss
Option C:	Both Copper Loss \& Iron Loss
Option D:	Full load Currents
Q24.	Dc Generator converts
Option A:	Mechanical Energy into Electrical Energy
Option B:	Electrical Energy into Mechanical Energy
Option C:	Electrical Energy into Solar Energy
Option D:	Mechanical Energy into Solar Energy
	Role of Commutator in motor is to

University of Mumbai

Examination 2020 under cluster 9 (FAMT)

Option A:	Flow the current in uni-direction in rotor winding
Option B:	Flow the current in bi-direction in rotor winding
Option C:	No flow of Current in rotor winding
Option D:	Flow of Current in all direction

