Examination 2020 under cluster 9 (FAMT)

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Revised 2019

Examination: First Year Semester I

Course Code: FEC105 and Course Name: Basic Electrical Engineering

Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Mesh is a closed loop
Option A:	that contains many loops
Option B:	that contains two loops
Option C:	that doesn't contain any other loop
Option D:	that is complex loop
Q2.	Kirchhoff's Voltage & current laws are applied respectively in
Option A:	Only Mesh Analysis
Option B:	Only Nodal Analysis
Option C:	Mesh & Nodal Analysis
Option D:	Nodal & Mesh Analysis
Q3.	Voltage & currents are always measure in
Option A:	Series & parallel respectively
Option B:	Parallel & Series respectively
Option C:	Only in parallel
Option D:	Only in series
Q4.	Internal resistance of an Ideal voltage source is
Option A:	Infinite
Option B:	negative
Option C:	Zero
Option D:	Non Zero
Q5.	Calculate Equivalent resistance for given network if all resistors having equal
	value of 10 Ω
	R_1 R_2 R_3 R_4 (a)
Option A:	2.5 Ω
Option B:	5 Ω
Option C:	40 Ω
Option D:	100 Ω
540.011.01	

Q6.	For Given Figure 11 & I2 values are
	10 15
	1 mm m
	WITT TO SIDT SE
	IN TIN SIDIE
	¥
	1ł
Option A:	0.8 A, 0.2 A
Option B:	0.7 A, 0.2 A
Option C:	0.6 A,0.2 A
Option D:	0.8 A, 0.3 A
Q7.	Calculate RAB
-	A
	4Ω
	4Ω Š Š8Ω
	<mark>6Ω</mark>
	$8\Omega^{1}$ 4Ω
	В
Option A:	3.67 Ω
Option B:	5.67 Ω
Option C:	7.67 Ω
Option D:	9.67 Ω
•	
Q8.	Super node is formed when
Option A:	only current source is present in a independent branch
Option B:	only voltage source present between a normal junction & datum junction
Option C:	only voltage source present between two normal junctions
Option D:	only voltage source present between two datum junctions
Q9.	What is the unit of admittance?
Option A:	ohm
Option B:	farad
Option C:	henry
Option D:	mho
Q10.	What is amplitude, frequency if equation is e=25 sin(314t)
Option A:	25V, 50 Hz
Option B:	17.67 V, 50 Hz
•	

University of Mumbai Examination 2020 under cluster 9 (FAMT)

Examination 2020 under cluster 9 (FAMT)

7.67 V, 60Hz For parallel circuit impedances Z1=6+j8, Z2=8-6j of individual branches What is equivalent Impedance 5+2j 1+2j 7+1j 7-1j
equivalent Impedance 5+2j 1+2j 7+1j
equivalent Impedance 5+2j 1+2j 7+1j
equivalent Impedance 5+2j 1+2j 7+1j
5+2j 1+2j 7+1j
1+2j 7+1j
7+1j
5
-)
Which Circuit never consumes the power
Purely resistive
nductive or Series RL
Purely Capacitive
Capacitive or Series RC
n Series Resonance the Impedance Z is
ξ
R+jX _L
λ-jX _C
R+j(X _L -X _C)
Parallel Resonance is
Voltage Magnification Circuits
Current Magnification Circuits
Current Reduction Circuits
Voltage Reduction Circuits
Power factor in series Resonance is
Zero
one
Less than one
Greater than one
What is Phase Sequence in 3 Φ system
RBY
YBR
3YR
RYB
n star connected 3 Φ load Line Voltage VL is =
$\sqrt{3}$ V _{Ph}
V _{Ph}
1
$\sqrt{3}$ VPh

Examination 2020 under cluster 9 (FAMT)

Option D:	$\sqrt{2} V_{Ph}$
Q18.	In Delta connected load
Option A:	Line & Phase Voltages are Equal
Option B:	Line & Phase Currents are Equal
Option C:	Phase Voltage & Phase Currents are Equal
Option D:	LineVoltage & Line Currents are Equal
Q19.	Power in Star connected load is equal to
Option A:	Power in Delta connected load
Option B:	Three times the Power in Delta connected load
Option C:	One Third of Power in Delta connected load
Option D:	Two times the Power in Delta connected load
020	Transformer converts input AC signal into
Q20.	Transformar converts input AC signal into DC signal
Option A:	
Option B:	AC signal with change in Voltage or Currents with Keeping constant Frequency.AC signal with change in Voltage or Currents with variable Frequency.
Option C:	
Option D:	Constant Signal
Q21.	For given Voltage Rating 440 V/230V What is type of Transformer
Option A:	Step down
Option B:	Step up
Option C:	isolated
Option D:	Auto
Q22.	A role of slip ring in a Ac generator
Option A:	Power transmission
Option B:	Allow electrical contact with brushes
Option C:	Not allow electrical contact with brushes
Option D:	For rotation of armature
Q23.	Open Circuit Test on Transformer is used to Calculate
Option A:	Copper Loss
Option B:	Iron Loss
Option C:	Both Copper Loss &Iron Loss
Option D:	Full load Currents
Q24.	Dc Generator converts
Option A:	Mechanical Energy into Electrical Energy
Option B:	Electrical Energy into Mechanical Energy
Option C:	Electrical Energy into Solar Energy
Option D:	Mechanical Energy into Solar Energy
Q25.	Role of Commutator in motor is to

Examination 2020 under cluster 9 (FAMT)

Option A:	Flow the current in uni-direction in rotor winding
Option B:	Flow the current in bi-direction in rotor winding
Option C:	No flow of Current in rotor winding
Option D:	Flow of Current in all direction